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Icosahedral shells undergo a buckling transition as the ratio of Young’s modulus to bending stiffness in-
creases. Strong bending stiffness favors smooth, nearly spherical shapes, while weak bending stiffness leads to
a sharply faceted icosahedral shape. Based on the phonon spectrum of a simplified mass-and-spring model of
the shell, we interpret the transition from smooth to faceted as a soft-mode transition. In contrast to the case of
a disclinated planar network where the transition is sharply defined, the mean curvature of the sphere smooths
the transition. We define elastic susceptibilities as the response to forces applied at vertices, edges, and faces of
an icosahedron. At the soft-mode transition the vertex susceptibility is the largest, but as the shell becomes
more faceted the edge and face susceptibilities greatly exceed the vertex susceptibility. Limiting behaviors of
the susceptibilities are analyzed and related to the ridge-scaling behavior of elastic sheets. Our results apply to
virus capsids, liposomes with crystalline order, and other shell-like structures with icosahedral symmetry.
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I. INTRODUCTION

Virus capsids �1� and other structures such as colloido-
somes �2� and liposomes �3,4� consist of thin shells of
spherical topology that frequently exhibit icosahedral sym-
metry. A popular simplified model �5–8� replaces the shell
with a triangulated network of masses and springs �see
Fig. 1�. This network consists of five- and six-coordinated
vertices, with the five-coordinated vertices aligned with the
fivefold icosahedral symmetry axes. Five-coordinated verti-
ces may be considered as +2� /6 disclinations within an oth-
erwise six-coordinated lattice. These disclinations are absent
in conventional continuum models of spherical shells �9–11�.

The elastic properties of the capsid can be mimicked by
suitably adjusting the spring constants to obtain the desired
Young’s modulus Y and by imposing a curvature energy to
obtain the bending modulus �. Strains associated with the
disclinations cause the network to buckle �12�, transforming
the shape from smooth and nearly spherical to strongly fac-
eted and nearly icosahedral �5�. A dimensionless parameter
controls the transformation. We define the Foppl–von Kar-
man number

� =
YR2

�
, �1�

where R is the linear dimension of the shell. The buckling
occurs when � exceeds a value �b of order 102 �see Fig. 2�.
For the virus HK97, which appears to facet as it matures
�13,14�, � reaches a value of order 103 according to the es-
timate of Ref. �5�. Varying the pH of the solution can alter �,
with the range 100–900 reported for the virus CCMV
�15,16�. At much larger values of � �in excess of 106�, which
should characterize liposomes with crystalline order, an in-

teresting phenomenon known as “ridge scaling” emerges
�17–22�.

Caspar and Klug �1� classify icosahedral structures by a
pair of integers �P ,Q�. A pair of five-coordinated vertices is
connected by a path consisting of P edges in some given
direction and Q edges in a direction 60° to the left �e.g.,
between two blue vertices via a red vertex in Fig. 1�. The
T number of the network, T= P2+ PQ+Q2, gives the number
of vertices as Nv=10T+2. There are always 12 five-
coordinated vertices, so the number of six-coordinated verti-
ces is 10�T−1�. Structures with P and Q both nonzero and
P�Q are chiral, such that �P ,Q� and �Q , P� are mirror im-
ages. Their symmetry group is the 60-element icosahedral
rotation group Y. Structures with either P or Q=0, or with
P=Q, are nonchiral. Their symmetry belongs to the 120-
element group Yh=Y �Z2, which should not be confused
with the 120-element icosahedral double group Y� �23�.

We exploit the rotational symmetry group to analyze the
normal modes of the network model by diagonalizing the
Hessian matrix of the elastic energy. Eigenvectors represent
characteristic modes of deformation, which transform ac-
cording to irreducible representations of Y, and the corre-
sponding eigenvalues measure the mechanical stability. Be-
cause the buckling occurs in a symmetric fashion, the
corresponding modes must exhibit full icosahedral symme-
try. Nondegenerate modes transform as the unit representa-
tion. Tracking these nondegenerate eigenvalues reveals a
softening and also a mixing of modes as � passes through �b.

Other studies consider more microscopic elastic network
models �24,25� that place nodes at every C� atom in the
amino acid chains. These studies find that the displacements
during maturation �i.e., as the virus goes through the buck-
ling transition� can be accurately represented using a super-
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position of only the lowest few nondegenerate modes, con-
sistent with our expectations. A normal-mode analysis of a
full atomic model with reduced degrees of freedom �26� il-
lustrates both symmetric and nonsymmetric modes and clas-
sifies these using group representations.

Section II of this paper reviews the continuum-elastic
theory for deformations of planes and spheres, to establish
notation and for comparison with our later numerical results.
Our network model is defined in Sec. III and applied to the
special cases of disclination-free triangular lattices, single
disclinations of positive charge, and icosahedral structures of
spherical topology containing 12 disclinations. Low-lying ei-
genvalue spectra reveal a sharp buckling transition in the
case of a single disclination but a broadly smeared transition
for the icosahedral case. Following Ref. �5�, we find that the
positive curvature of the sphere plays a symmetry-breaking
role analagous to that of an applied magnetic field at a fer-
romagnetic phase transition.

The final section �Sec. IV� applies forces to selected
points on a plane or a shell to probe the elastic response of
the network as a whole. The resulting displacements define
susceptibilities which diverge in the case of the single discli-
nation. In the case of the icosahedron, we find that the effec-
tive stiffness �inverse of the susceptibility� drops most rap-
idly at �b for forces applied at fivefold symmetry axes, but
the stiffness falls off more rapidly for forces applied at two-
and threefold symmetry axes for ���b. We analyze these
susceptibilities in the limiting cases of small and large �.

II. CONTINUUM-ELASTIC THEORY

The general elasticity theory of membranes can be ex-
pressed in coordinate-free form �11,27�. Let M be a manifold
�a two-dimensional smooth surface embedded in three-
dimensional space� assumed to be in mechanical equilib-
rium. Now impose a tangential deformation u�x� and a nor-
mal deformation ��x� corresponding to displacements of
points x on the surface. Let g�	 and C�	 be the metric and
curvature tensors, respectively, of M after distortion. Greek
indices take values 1 and 2 corresponding to the dimensions
of M. Define the strain tensor

U�	 = u�	 + �C�	, �2�

where u�	= 1
2 �D�u	+D	u�� and D� indicates covariant dif-

ferentiation with respect to x�. The trace U�
� measures dila-

tion, while

S�	 = U�	 −
1

2
g�	U�

� �3�

measures shear strain. Bending of M is characterized by the
mean curvature H= 1

2C�
� and Gaussian curvature K=det C.

The free energy density at x contains dilation, shear, and
bending contributions,

f�x� = fd + fs + fb, �4�

and can be integrated over M to obtain the total free energy

F =� f�x��det g d2x . �5�

The separate contributions are

fd�x� =
1

2
�
 + ���U�

��2,

fs�x� = �S�	S�	,

fb�x� =
1

2
��2H − c0�2 + �GK . �6�

The elastic constants 
 and � are the Lamé constants �28�.
The two-dimensional �2D� area �bulk� modulus B=
+�,
while � itself is the shear modulus, and the 2D Young’s
modulus Y =4��
+�� / �
+2��. Upon integration over the
surface M, the Gaussian curvature term becomes constant,
and we neglect this term henceforth. Likewise, we set the
spontaneous curvature c0=0, thus assuming that the mani-
fold M would be flat in the absence of constraints associated
with the spherical topology. Effects of c0�0 are discussed in
Ref. �6�.

FIG. 1. �Color online� Triangulated network of P=Q=2. Colors
identify local environments with fivefold vertices shown in blue.

FIG. 2. �Color online� Shell shape above the buckling transition
for P=128, Q=0 shell with ks=1 and kb=16, yielding Foppl–von
Karman number �=930. Color coding is logarithmic according to
total elastic energy �violet=low, red=high�.
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Given the elastic free energy F, we obtain the stress ten-
sor

��	�x� =

F


U�	�x�
, �7�

whose divergence yields the tangential force

F	 = D���	. �8�

The normal force is given by

N�x� = −

F


��x�
. �9�

In mechanical equilibrium, the stress tensor and normal
force vanish. Slightly out of equilibrium, to first order in the
displacements, special forms of u�x� and ��x� known as nor-
mal modes solve the eigenvalue equation

�F,N� = − ��u,�� . �10�

When displaced from equilibrium according to the kth nor-
mal mode �uk ,�k�, the free energy increases by

�F =
1

2
�k� ��uk�2 + � j

2�dx . �11�

According to the equipartition theorem, the modes fluctuate
with thermal energy �F=kBT /2 and amplitude ���uk�2
+�k

2�dx=2kBT /�k.
The time dependence of the strains depends on the equa-

tions of motion. In the overdamped case we write

u̇	�x� = �F	�x�, �̇�x� = �N�x� , �12�

where we take � proportional to the inverse viscosity as in a
Stokes-Einstein relation. In this case a normal mode decays
in time with a decay rate �=��. Reference �29� carries out
a more thorough investigation of flat membranes coupled to
fluid flow. In the absence of damping we write

�ü	�x� = F	�x�, ��̈�x� = N�x� �13�

with � the 2D mass density. A normal mode now oscillates in
time at frequency �=�� /�.

A. Deformations of a plane

An infinite flat elastic sheet in equilibrium has no curva-
ture, so for small perturbations the energy decouples into
contributions from the in-plane strain u and the perpendicu-
lar displacement �:

f =
1

2

�u�

��2 + �u�	u�	 +
1

2
�����2. �14�

Here �=D�D�=�2 is the usual 2D Laplacian operator and �
the usual gradient. By differentiating the energy we obtain
the forces

F = �
 + �� � � · u + ��u �15�

and

N = − ��2� . �16�

Because the in-plane and out-of-plane displacements de-
couple, we solve them separately. The solutions are based on
the plane wave function

�k�r� = eik·r, �17�

which is an eigenfunction of the Laplacian operator ��k�r�
=−k2�k�r�. In-plane normal modes are expressed as longitu-
dinal waves

uL�r� = ��k�r� = ikeik·r �18�

and transverse waves

uT�r� = ẑ � uL = i�kxŷ − kyx̂�eik·r. �19�

Note the identities ��uL=0 and � ·uT=0, as expected for
longitudinal and transverse waves. These waves are eigen-
vectors of the in-plane force Eq. �15� provided their eigen-
values obey the longitudinal and transverse dispersion rela-
tions, respectively,

�L = �
 + 2��k2 �20�

and

�T = �k2. �21�

Perpendicular out-of-plane waves

uP�r� = ẑ�k�r� �22�

obey Eq. �16� subject to the perpendicular wave dispersion
relation

�P = �k4. �23�

For future reference, we recast the normal modes in plane-
polar coordinates �r ,��, replacing the plane wave function
�k�r� with cylindrical Bessel functions

�km�r,�� = Jm�kr�eim�. �24�

The Laplacian operator takes the form

� =
1

r

�

�r
	r

�

�r

 +

1

r2

�2

��2 . �25�

Like the plane wave function �k�r�, waves of type �24�
are eigenfunctions of the Laplacian operator, ��km�r ,��
=−k2�km�r ,��. Upon defining normal modes uL , uT , uP as
in Eqs. �18�, �19�, and �22� the longitudinal, transverse, and
perpendicular dispersion relations given in Eqs. �20�, �21�,
and �23� result. These polar forms generalize nicely to coni-
cal and spherical geometries.

B. Deformations of a sphere

Now we redo the prior calculation of Sec. II A for the
case of small perturbations around a sphere of equilibrium
radius R. In this case, the unperturbed manifold has constant
mean curvature H0=1/R. Consequently the free energy ac-
quires a term coupling the in-plane and normal strains
through the dilation energy,

fd =
1

2
�
 + ���u�

� + 2�/R�2,
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fs = ��u�	u�	 − �u�
��2� ,

fb
�det g =

1

2
��	 2

R
− ��
2

−
2

R2 �D���2� . �26�

In the above, the Laplacian operator takes the form

� =
1

R2 sin �

�

��
	sin �

�

��

 +

1

R2 sin2 �

�2

��2 . �27�

Notice that we include the integration measure �det g along
with the bending energy fb, because it contributes the term
�D���2. The �det g factor is not needed in fd or fs because
these are already second order in the deformation.

Taking functional derivatives of F yields the stress tensor
and in-plane and normal forces

��	 = 
g�		u�
� +

2

R
�
 + 2�	u�	 +

1

R
g�	�
 ,

F	 = �
 + ��D		u�
� +

2

R
�
 + �	� +

1

R2
u	,

N = − �
 + ��	 2

R
u�

� +
4

R2�
 − �L� , �28�

where we define

L = D�D�D	D	 +
2

R2D�D�. �29�

The extra �u	 /R2 in Eq. �28� for F	 comes from commuta-
tion of covariant derivatives. The final, second-derivative,
term in �29� comes from integrating by parts the square of
the first derivative in fb

�det g.
Take the spherical harmonic Ylm�� ,�� as the basic defor-

mation, analogous to the plane wave eik·r in Eq. �17� or the
cylindrical wave Jm�kr�eim� in Eq. �24�. The spherical har-
monic is an eigenfunction of � with eigenvalue −l�l+1� /R2

and an eigenfunction of L with eigenvalue l�l−1��l+1��l
+2� /R4. By analogy with the procedure for plane waves in
flat space, we take derivatives as

uL = R � Ylm, uL
� = RD�Ylm,

uT = r̂ � uL, uT
� = R�	

�D	Ylm, �30�

where � is the alternating tensor. We also define

uP = r̂Ylm. �31�

These functions are linear combinations of the “vector
spherical harmonics” Vlm, Wlm, and Xlm, which form a com-
plete set of orthogonal functions for expanding vector fields
on the surface of a sphere �23,30�. Notice that the transverse
mode uT is proportional to the angular momentum operator
acting on Ylm, thus identifying it with the vector spherical
harmonic Xlm. The longitudinal and perpendicular modes uL
and uP are linear combinations of Vlm and Wlm. Note that the
longitudinal and transverse modes uL and uT exist only for
l�1, while uP exists for l�0.

The transverse mode uT is divergenceless �u�
�=0� and

hence creates no perpendicular force N and no longitudinal
force �the gradient part of F	�. In fact, it is an eigenfunction
of the force �28�. Upon taking into account the commutation
of covariant derivatives, we find F	= ���l−1��l+2� /R2�uT

	,
from which we obtain the eigenvalue

�T = �
�l − 1��l + 2�

R2 . �32�

As expected, �T=0 for l=1 because these modes correspond
to rigid rotations.

In contrast to the transverse modes, the longitudinal and
perpendicular modes uL and uP are coupled in both the tan-
gential force F	 and perpendicular force N. In matrix form,

	F�

N

 = 	MLL MLP

MPL MPP

	uL

�

�

 . �33�

Setting uL as in Eq. �30� and setting � as the radial compo-
nent of uP in Eq. �31�, the matrix elements of M become

MLL = �
 + ��
l�l + 1�

R2 + �
�l − 1��l + 2�

R2 ,

MLP = �
 + ��
2

R2 ,

MPL = �
 + ��
2l�l + 1�

R2 ,

MPP = �
 + ��
4

R2 + �
�l − 1�l�l + 1��l + 2�

R4 . �34�

The eigenvalues of this matrix, 
±, are the desired normal-
mode eigenvalues �. For the special case l=1, the eigenval-
ues are 
−=0 and 
+=6�
+�� /R2. The vanishing eigenvalue

− corresponds to rigid translation �for example, the north
and south poles displace upward perpendicular to the shell
while the equator displaces upward tangent to the shell�. The
finite eigenvalue 
+ corresponds to an “optical” mode in
which polar and equatorial regions displace in opposite di-
rections �for example, the north and south poles displace
upward while the equator displaces downward�.

The spherical solution should go smoothly to the flat
space solution in polar coordinates as the sphere radius R
→�. This correspondence can be verified by holding r=R�,
k= l /R, and m fixed, and noting that �31�

lim
l→�

� 4�

2l + 1
Ylm��,�� = �− 1�mJm�kr�eim�. �35�

In addition, the eigenvalues should approach their proper
limits. Clearly, �T approaches its flat space limit �21�. To
check �L,P, note that the eigenvalues 
± of the matrix �34�
approach �
+2��l�l+1� /R2 and ��l−1�l�l+1��l+2� /R4 in
the limit of large sphere radius R, yielding the flat space
limits Eqs. �20� and �23�.
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III. MASS-AND-SPRING MODEL

We now introduce the discrete mass-and-spring model for
which numerical calculations will be performed. This model
is also closer to reality for liposomes and colloidosomes,
which consist, respectively, of discrete lipid molecules and
colloidal particles, and also for viruses, which consist of an
aggregation of discrete protein subunits known as capsom-
ers. Let ri be the position of mass i and n̂I be the orientation
of plaquette I. A plaquette is a set of three masses joined to
each other by springs, and we take the normal in the outward
direction. Following �5�, we define

Hs =
ks

2 

�ij�

��ri − r j� − a�2 �36�

and

Hb =
kb

2 

�IJ�

�n̂I − n̂J�2 �37�

and set the unstretched spring length a=1. Here �ij� denote
pairs of nearest-neighbor vertices, and �IJ� denote pairs of
adjacent �edge-sharing� plaquettes. In the continuum limit
the discrete model reproduces the continuum system with
elastic constants

Y =
2
�3

ks, � =
�3

2
kb, �38�

Foppl–von Karman number

� =
YR2

�
=

4ksR
2

3kb
, �39�

Lamé coefficients and bulk modulus


 = � =
�3

4
ks, B =

�3

2
ks, �40�

and 2D mass density �taking the vertex mass m=1�

� = 2/�3. �41�

A. Deformations from flat space

Consider a regular six-coordinated triangulated network
of masses and springs. As before we start with the plane
wave function �17� and take its gradient to obtain the longi-
tudinal sound wave. The dispersion relation is simplest for
wave vector k in the ŷ direction �chosen to lie midway be-
tween two near-neighbor bonds�,

�L = 3ks�1 − cos	�3

2
kya
� . �42�

Taking the cross product with ẑ yields the transverse sound
wave with dispersion relation

�T = ks�1 − cos	�3

2
kya
� . �43�

Finally, taking the perpendicular displacements as the plane
wave yields the perpendicular modes with dispersion relation

�P = kb�2 − 2 cos	�3

2
kya
�2

. �44�

In the continuum limit ka�1, these dispersion relations re-
vert to the prior results of continuum-elastic theory.

B. Buckling of a plane into a cone

Upon introducing a fivefold +2� /6 disclination into the
flat triangulated network discussed previously, strain energy
accumulates �12� and grows without bound as the radius R of
the network increases. At some specific “buckling radius” Rb
it becomes energetically favorable to buckle out of plane,
trading a reduction in strain energy for a cost in bending
energy. The trade-off is measured by the Foppl–von Karman
number �. Small � favors flat networks, while larger � favors
buckling into a conical shape.

In the following, we analyze the vibrational spectrum of
the network as it passes from flat to conical. Rather than vary
the radius, we hold R fixed and vary the bending stiffness.
Large kb opposes buckling and the network lies flat, while
small kb allows buckling out of plane into a cone. For the
network of radius R=8a analyzed below, buckling occurs for
kb�0.71. As R increases the threshold value of kb grows as
R2, so that � approaches the limiting value �b�154 �5,12�.

Eigenvectors of the Hessian matrix form basis functions
for representations of the symmetry group of the structure
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FIG. 3. �Color online� Triangulated network of radius 8a and
spring constant ks=1 with a single fivefold disclination at center.
�Top� Eigenvalue spectrum color coded according to degeneracy.
Note the nondegenerate 1X mode that goes to zero at the buckling
transition. �Bottom� Energy, cone height, and susceptibility.

SOFT MODES NEAR THE BUCKLING TRANSITION OF… PHYSICAL REVIEW E 76, 031911 �2007�

031911-5



�32�. Eigenvectors sharing a common eigenvalue form the
basis for an irreducible representation. Thus the patterns of
degeneracy follow the dimensionalities of the irreducible
representations, as can be seen in Fig. 3�a�. Likewise, the
eigenvectors exhibit special symmetry properties associated
with subgroups of the full symmetry group.

The symmetry point group of the cone is C5v in general,
corresponding to fivefold rotations around an axis passing
through the five-coordinated vertex, together with reflections
in vertical planes passing through this axis �see Table I�. For
the specific case of the flat network, the group is even higher,
D5h, adding reflections in the horizontal plane, and twofold
rotations around axes lying within the plane. For both groups
all irreducible representations are either one or two dimen-
sional, so all nonzero eigenvalues must be nondegenerate or
twofold degenerate. Of course, there must be a sixfold de-
generacy of zero eigenvalues, corresponding to rigid transla-
tions and continuous rotations �not belonging to the finite
point group� that leave the energy invariant.

For the group D5h, the irreducible representations are
based on those of C5v supplemented with an additional label
g , u according to whether they are even �g� or odd �u� under
reflection through the horizontal plane �h. The requirement
that each irreducible representation be either even or odd
under �h requires that each mode be polarized either fully in
plane or fully perpendicular.

Let �1 be the lowest nonzero eigenvalue. Its eigenvector
e1 is polarized strictly perpendicular to the sheet and trans-
forms as the irreducible representation A2u. Its value is non-
zero at the origin. The energy of mode i varies as �iai

2 where
ai measures the amplitude of the mode. Mechanical equilib-
rium thus demands that all eigenvalues �other than the six

zero modes� be strictly positive. In particular, it requires
�1�0. However, if we monitor the value of �1 as a function
of � �Fig. 3�a�� we find it crosses through zero at �b.

For small deformations we express the energy as

E = 

i

1

2
�iai

2 + O�ai
4� . �45�

Now set �1=c��b−��. The mechanically stable minimum
energy structure is perfectly flat �ai=0� for ���b, but it
buckles out of plane for ���b, in a shape described by the
eigenvector e1, with amplitude growing as ��−�b. Mean-
while, the energy drops as ��−�b�2. These effects can be
seen in Fig. 3�b�.

For ���b, Fig. 3�a� shows the spectrum of vibrations
around the mechanically stable, buckled structure. Note that
�1� �the lowest nondegenerate eigenvalue� becomes positive
again.

C. Buckling of spherical shells

1. P=1, Q=0 icosahedron

Table II presents the character table of the 60-element
icosahedral rotational symmetry group Y, which has five ir-
reducible representations. The conjugacy classes are labeled
Cn, where n is the order of elements in the class, so that an
element of Cn corresponds to a rotation by 2� /n. Recall that
the spherical harmonics Ylm form basis functions for the ir-
reducible representations of the continuous rotation group
SO�3�, and therefore they induce representations �in general
reducible� of Y. For a given angular momentum l and rota-
tion angle �, the character is

TABLE I. Character table of C5v. Cn denotes conjugacy class of order n. Values of m denote in-plane
angular momenta. �= ��5+1� /2 is the golden mean.

C5v m 1C0 2C5 2C5
2 5�v

A1 0 1 1 1 1

A2 0 1 1 1 −1

E1 1 2 �−1 −� 0

E2 2 2 −� �−1 0

TABLE II. Character table of Y. Cn denotes conjugacy class of order n. Values of l denote angular
momenta. R is the regular representation and V the total vibrational representation discussed in Sec. III C 1.

Y l 1C0 15C2 20C3 12C5 12C5
2

A 0 1 1 1 1 1

F1 1 3 −1 0 � −�−1

F2 �3� 3 −1 0 −�−1 �

G �3� 4 0 1 −1 −1

H 2 5 1 −1 0 0

R 12 0 0 2 2

V 36 0 0 2� −2�−1
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�l��� =
sin�l + 1/2��

sin �/2
. �46�

Irreducible representations �irreps� of Y are labeled in Table
II according to the lowest angular momentum l under which
they transform. Of particular interest is the representation F1
corresponding to angular momentum l=1. This is the repre-
sentation under which three-dimensional vectors transform.

The simple icosahedron has 12 vertices, 20 faces, and 30
edges. Since we place masses on the vertices, our eigenstates
are functions defined only at vertex positions. Arbitrary
scalar-valued functions can be expressed as linear combina-
tions of the basis functions of the “regular representation,”
one of which is concentrated at each icosahedron vertex. The
characters �R of the regular representation equal the number
of vertices that remain stationary under a given symmetry
operation. Our vibrational modes are vector-valued functions
on the set of vertices and thus can be expressed as linear
combinations of the product of the regular representation R
times the representation F1 corresponding to a three-
dimensional vector. We call the resulting product representa-
tion the “total vibrational representation” �23�, and its char-
acters �V=�R�F1

.
Reducible representations can be decomposed into their

irreducible components using orthogonality properties of
character tables. In particular we obtain the decomposition

V = A � 3F1 � F2 � 2G � 3H . �47�

Of the three occurrences of the vector representation F1,
we know that two must correspond to rigid global transla-
tions and rotations. These leave the energy invariant and
hence are zero-frequency modes. The nondegenerate mode
transforming as the unit representation A must correspond to
a “breathing mode” in which all vertices displace equally in
the radial direction. We find that the remaining modes have
specific interpretations in terms of vector spherical harmon-
ics, as listed in Table III.

2. Higher-order icosahedra

As the icosahedron is subdivided and the total number of
vertices grows, the classification of modes into irreducible

representations remains similar, but each irreducible repre-
sentation now occurs many times. Figure 4�a� shows the
lowest-frequency modes for a P=8, Q=0 icosahedron with
Nv=642 vertices. To obtain this figure, we set ks=1, and
varied kb. For each value of kb we relaxed the structure to
mechanical equilibrium using steepest descents, evaluated
the Hessian matrix by numerical differentiation, and then
diagonalized the matrix. The Foppl–von Karman number is
defined as in Eq. �39�, where now R is defined as the root-
mean-square radius1 and takes values in the range 6.6–7.6
for the P=8, Q=0 icosahedron.

Owing to the rotation and translation invariance of the
total energy, we always have a sixfold degenerate mode of
zero eigenvalue. The remaining eigenvalues fall into the
classification of icosahedral symmetry introduced in Table II.

At low �, when the shape is spherical in the continuum
limit of large radius, and the energy cost of bending domi-
nates over the energy cost of stretching or shearing, the
lowest-frequency nondegenerate mode is a breathing mode,
corresponding to a sphere with oscillating radius. Perturbing
the radius by an amount � �i.e., adding mode uP= r̂�� in-
creases the energy by 8�B�2 while displacing Nv vertices by

1Defining R instead as the mean radius �5� has little impact below
or near the buckling transition and results only in a slight rescaling
as � grows large.

TABLE III. Vibrational eigenvalues for P=1, Q=0 icosahe-
dron with a=ks=1, kb=0. � is the eigenvalue and g the degeneracy.
R=�1+�2 /2=0.951 06 is the radius of the icosahedron.

� Formula Irrep g Comments

0.00000 0 2�F1 6 Translations+rotations

0.58579 2−�3 Ha 5 Mixed, contains V2m and W2m

0.76393 �5/R2−2 F2 3 Radial, contains rY3m

1.00000 1 H 5 Tangent X2m

1.80901 1+� /2 Ga 4 Tangent X3m

2.76393 �5/R2 A 1 Radial rY00 breathing mode

3.00000 3 F1 3 Mixed V1m

3.41421 2+�2 Hb 5 Mixed

3.42705 1+3� /2 Gb 4 Tangent
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FIG. 4. �Color online� Lowest-frequency modes of P=8, Q
=0 icosahedron with Nv=642 vertices: �top� color coded according
to degeneracy; �bottom� nondegenerate modes only. Arrows locate
eigenvalue �breathing=8��3/Nv. Note that the buckling mode �red�
dips close to zero near the buckling transition.
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�. Identifying the energy with 1
2Nv�breathing, and noting the

area modulus B=�3/2, we find the eigenvalue �breathing

=8��3ks /Nv, which fits well to the data in Fig. 4.
At higher frequencies, where the wavelength of the modes

becomes small compared to the radius of curvature, we ex-
pect that the eigenvalues should revert to their flat space
limits as discussed in Sec. II B. The validity of this hypoth-
esis is demonstrated in the dispersion relations shown in Fig.
5. Here we plot the vibrational frequencies �i.e., the square
roots of Hessian eigenvalues� as functions of the equivalent
wave number, defined as the angular momentum index l di-
vided by the radius R. The radii of the circles represent the

projections of the eigenvectors onto the vector spherical har-
monics Xlm �top�, and the longitudinal and transverse eigen-
functions uL and uT �middle and bottom�. The solid lines are
the predictions of continuum elastic theory for the plane,
Eqs. �20�–�22�.

Soft-mode behavior at the buckling transition is less pro-
nounced than in the case of the cone. The crossover from
spherical to faceted shape, which occurs gradually for �
�100–1000, preserves the icosahedral symmetry. As such,
the displacements respect icosahedral symmetry. If the tran-
sition is due to a soft mode, this mode itself must be invari-
ant under operations of the icosahedral symmetry group.
That is, it must transform as the unit representation and
therefore must be nondegenerate. The soft mode is best seen
in Fig. 4�b�, where only the nondegenerate modes are shown.
Always the lowest-frequency nondegenerate mode is an l
=m=0 breathing mode, and as just discussed its frequency
does not depend significantly on kb. However, the next oc-
currence of the unit representation, at l=6, contains a mode,
of type uP and labeled Y6m, that does indeed soften and
mixes with the breathing mode in an avoided crossing
around ��400. Another l=6 mode, of type uT and labeled
X2m, is prevented by symmetry from mixing with the uP
mode. A series of other nondegenerate modes �l
=10,12,20, . . .� soften at higher � values and mix with the
other soft modes.

Around �b, the buckling mode consists predominantly of
l=0 and 6 spherical harmonics, with a small admixture of l
=10 and higher harmonics. The weight of this mode is con-
centrated in the vicinities of the icosahedron vertices, and it
has strong overlap with the displacements of vertices under
the buckling transition.

The forbidden crossing of the buckling and breathing
mode smears the buckling transition, because �buckling
��breathing�0 prevents the eigenvalue of the buckling mode
from actually crossing zero. This contrasts with the case of
the disclinated flat sheet buckling into a cone, where the
eigenvalue does indeed cross zero. For the sheet-to-cone
transition, the analog of the breathing mode is just a zero-
energy translation, rather than a finite-frequency radial dis-
placement. Also, up-down symmetry of the plane allows the
crossing of the buckling mode �which is odd� with this trans-
lation. On a sphere, the symmetry breaking between inside
and outside the sphere causes the breathing mode to mix
with the buckling.

Owing to the smearing, the value of �b is not uniquely
defined for the sphere-to-icosahedron transition. Reported
values range from 130 to 260 based on fitted energy models
�5,6�. We observe the avoided crossing around ��400.

IV. SUSCEPTIBILITIES

A. Cones

The soft-mode transition is a genuine sharp phase transi-
tion for the buckling of a disclinated sheet into a cone. We
already discussed the order parameter �height� and energy
variation through the transition, in Sec. III B. Now we con-
sider the susceptibility, namely, the response of the order
parameter to an applied field. In this case, we examine the
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response of the buckling height to a point force applied at the
disclination.

Assume the height of the cone �i.e., the vertical displace-
ment of the five-coordinated particle at the center� is given
by h=
iPiai, where again ai is the amplitude and measures
the projection of the mode i onto the height variable. Then in
the presence of an applied force we express the energy as

E = 

i
	1

2
�iai

2 − FPiai
 , �48�

which differs from �45� by the work done against the applied
force. Minimizing the energy yields ai=FPi /�i resulting in
total height h=F
iPi

2 /�i and susceptibility

� =
�h

�F
= 


i

Pi
2

�i
. �49�

Thus a vanishing eigenvalue, say �1, passing linearly
through zero at �=�b, translates immediately into a diverg-
ing susceptibility. This divergence is evident in Fig. 3�b�.
Note that the amplitudes differ on the two sides of �b be-
cause in one case we perturb around a flat network while in
the other we perturb around a buckled cone.

B. Spheres

Now consider the analogous response for the case of
icosahedrally symmetric triangulated spheres and faceted
icosahedra. We consider the inverse of the susceptibility as
an effective spring constant K=1/�, and make the spring
constant dimensionless by dividing by the Young’s modulus
Y. We first present numerical results for symmetric forces
over a wide range of � values; then in later sections we
consider the limiting cases of small and large �. A similar
analysis was carried out previously �33� using a slightly dif-
ferent form of curvature energy.

Our data were generated from a sequence of icosahedra of
varying sizes and elastic properties. We consider nonchiral
icosahedra with P=Q ranging from 4 to 512 �i.e., Nv ranging
from 482 to 7 864 322�. To speed calculation, the full 120-
element icosahedral symmetry group Yh was employed, re-
sulting in a speedup of nearly 120 times. Beyond the buck-
ling transition the five-coordinated vertices sharpen, with a
radius of curvature Rv related to the buckling radius

Rb = ��b�/Y � 12.4��/Y �50�

by a geometrical factor of order 1. In order to approximate
the continuum limit we chose to hold ks=1 fixed and keep
kb�1/2, resulting in Rb�7.6a.

Each structure was relaxed using the conjugate-gradient
method. We found that the necessary number of relaxation
steps diverges with increasing size, consistent with the 1/R4

vanishing relaxation rate predicted by Eq. �23�. To ensure
sufficient accuracy in the susceptibility, we used 128-bit real
arithmetic in the final stages of all relaxations. For P=Q
=512, complete relaxation requires approximately two
months on a 3.0 GHz Intel Xeon computer. For studies such
as ours, which seek the continuum limit, a finite-element
aproach �15,19,20� might be more computationally efficient
than our discrete mass-and-spring model.

Once the structure was relaxed without applied stress, we
re-relaxed with a radially inward force F applied symmetri-
cally at all N=12 vertices, all N=20 faces or all N=30 edges.
The effective spring constant K=F /� was defined as the ap-
plied force F divided by the displacement � of the mass to
which the force was applied. We actually consider NK /Y
because we define K as the derivative of � with respect to all
N simultaneous applied forces F. A small applied force F
=0.001 was required to achieve linear response in cases
where K became small.

Figure 6 shows numerical data for symmetric forces ap-
plied to vertices, edges, or faces. In the limit of small � the
three data sets converge to a �-independent value. As � in-
creases, the vertices weaken more quickly than the faces or
edges, consistent with our picture of the buckling transition
as concentrating at the disclinations, which are located at
vertices. However, beyond �b the vertex stiffness falls off
very slowly, while both face and edge stiffness continue their
rapid decline.

1. Small-� limit

The following discussion first considers the limit of small
�, in which the shapes are nearly spherical and calculations
can be done exactly. The response depends on whether the
stress is applied in a uniaxial manner �e.g., at diametrically
opposed points� or in a more symmetric manner �e.g., simul-
taneously at all vertices or faces, or edges, or even an isotro-
pic pressure�.

For an applied pressure P, the deformation is purely ra-
dial, with amplitude � as in the breathing mode discussed
previously. This increases the energy by 8�B�2, while doing
work 4�R2P� against the pressure. Balancing the two yields
�=R2P /4B, susceptibility �=�� /�P=R2 /4B, and spring con-
stant K /Y =4B /YR2. In the case of N symmetrically applied
point forces, we identify P=NF /4�R2, yielding NK /Y
=16�B /Y =12�=37.7, where we used Eqs. �38� and �40�.
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The stiffness is independent of �, consistent with the numeri-
cal result shown.

For uniaxial stress, let the displacement at the two poles
be � and assume this displacement persists over a polar re-
gion of size d �see Sec. 15 of Ref. �28��. The bending energy
density fb���� /d2�2, and integrating over the polar region
yields total bending energy Eb=��2 /d2. Meanwhile, the
strain tensor u�	�� /R yields a total stretching energy �see
Eq. �28�� Es�Y�� /R�2d2. Minimizing the sum Es+Eb to find
the optimal shape yields d4��� /Y�R2 and Es+Eb

���Y�2 /R. Equating this to F�, the work done against the
applied force, we find ���R /��Y�F and �=R /��Y. The
elastic constant K /Y �1/��, independent of the axis along
which the force is applied, consistent with our numerical
results �see Fig. 6, inset�.

2. Large-� limit

For ���b, the radius of curvature at the icosahedron ver-
tices quickly approaches Rv �Eq. �50�� and remains fixed
independent of the icosahedron radius R. Forces applied at
icosahedron vertices get transferred through the curved ver-
tex region to the flat facets in a primarily longitudinal man-
ner. According to the theory of longitudinal deformation of
plates �see Sec. 13 of Ref. �28��, the displacement at large
distances r from the applied force varies as u�r�
��F /Y�ln r /r0 with r0 some fixed length. Upon setting K
=F /u�R� and choosing r0 proportional to Rv, we find that
K /Y �c / ln�b���. The numerical data shown in Fig. 6 fit
well to this form with values c=17.3 and b=0.79. The curve
shown for comparison illustrates c=15, imposing a uniform
displacement for visual clarity.

For forces applied to the icosahedron edges we expect to
see the onset of ridge-scaling behavior �17–22� as � ap-
proaches 106. Unfortunately, the diverging relaxation time
prevents us from exploring larger � within our current cal-
culational method, preventing us from observing this behav-
ior cleanly. We briefly review the predictions of ridge scal-
ing.

Let L �which is proportional to R� be the length of an
icosahedron edge. At each end of this edge the facets join at
a fixed angle of �=138.2°. At the middle the edge sags in-
ward by an amount �, creating a saddle-shaped ridge with a
small radius of curvature R1 across the ridge and a large �and
negative� radius of curvature R2 along the ridge �17�. The
strain along the ridge line is of order �� /L�2. Because the
facets on either side of the ridge approach the angle �, the
radius R1 is proportional to the sag � �17�. Assuming that the
bending and strain energy persist along the length L of the
ridge and extend a distance R1 to either side, we estimate the
energy as

E = R1L�Y��/L�4 + ��1/R1�2� − F� , �51�

where the final term represents the action of a force F acting
at mid-edge.

Upon setting ��R1 and varying R1 to minimize the en-
ergy, we find, in the absence of force F,

R1 � ��/Y�1/6L2/3 � ��/Y�1/3 � L�−1/6. �52�

In the presence of a weak applied force F, the small radius
R1 increases by an amount of order

�R1 �
L

��Y
F . �53�

Recalling that ��R1 and converting this to an effective
spring constant K=dF /d� yields K /Y ��� /YL2�1/��. In-
deed, the edge elasticity in Fig. 6 seems to show a crossover
toward slope −1/2 on our log-log plot.

Meanwhile, the icosahedron faces become almost planar
in the limit of large �. Timoshenko �9� discusses the deflec-
tion of an equilateral triangular plate under a load applied at
the center. The deflection is proportional to R2 /�, from
which we conclude, using Eq. �1�, that K /Y �1/�. However,
in Fig. 6 the face elasticity seems to follow a power law
closer to −0.8 than −1. Perhaps residual stresses in the faces
or on their boundaries are responsible for this difference.

V. CONCLUSIONS

In summary, we investigated the eigenvalue spectrum of a
simple mass-and-spring model of a virus capsid as it passes
through its buckling transition. The buckling of a spherical
shell occurs in a smooth, nonsingular fashion, in contrast to
the buckling of a disclinated planar network. The smearing
can be attributed to symmetry breaking between the interior
and exterior of the shell and is caused by the forbidden cross-
ing of the buckling mode with a lower-frequency breathing
mode.

Symmetries of the icosahedron and analogies with
continuum-elastic theory were used to classify the normal
modes. Modes of full icosahedral symmetry, transforming as
the unit representation, soften as the Foppl–von Karman
number passes through the buckling transition. Displace-
ments during buckling, which resemble the maturation of
real high-T-number virus capsids such as HK97, can be well
represented as a superposition of the two lowest icosahe-
drally symmetric modes. A study using more realistic models
�25� also showed that the lowest two modes were sufficient
to describe maturation of HK97 and other high-T-number
capsids. However, maturation of some small-T-number vi-
ruses �e.g., CCMV with T=3� was well described using only
the single lowest symmetric mode. In this case, if the value
of � is not too high, the deformation should be close to the
l=0 breathing mode, displacements should be nearly uniform
across the shell, and the shape change minimal.

Susceptibilities to applied forces diverge at the buckling
transition for planar networks. For spherical topology they
evolve smoothly, with anomalies in the vicinity of �b. Sus-
ceptibility to forces applied at icosahedron vertices domi-
nates near �b, but icosahedron edges and faces are much
softer for large �. In the limit of small �, the effective spring
constant approaches the behavior of a spherical continuum.

Beyond the buckling transition, the faces have the softest
linear response, so this is where one might expect rupture in
response to an isotropic osmotic pressure. The relative soft-
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ness of icosahedron faces as compared to vertices has been
reported experimentally in liposomes �4�. We verified this
numerically by calculating the Q6 parameter, which mea-
sures the distortion from a sphere to an icosahedron �5�. Be-
low �b isotropic pressure weakly increases the value of Q6,
while above �b pressure strongly decreases Q6, bending the
facets to make the shape more nearly spherical.
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